

Bedienungsanleitung

Deutsch

Simulator ALMEMO[®] KA 7531

www.ahlborn.com

1. BEDIENELEMENTE

Geräterückseite:

(6) Batteriefach

3 Mignon-Alkali-Mangan Batterien

(1) Signalbuchsen P0 bis P4

- für AI MFMO[®]-Klemmstecker P0 Pt100
 - P1 10V. 60mV, Thermoelemente
- P2 20mA
- P3 Digitalsignale
- P4 Durchgangsprüfer

(2) Ausgangsbuchse A1

A1 Schnittstelle V24 (ZA 1909-DK5) USB (ZA 1919-DKU) LWL (ZA 1909-DKL) Ethernet (ZA 1945-DK)

(3) Anschlußbuchse DC

DC Netzadapter (ZA 1312-NA1, 12V) 12V und RS422 (ZA 5099-FSV) 9V und USB (ZA 1919-DKUV)

(4) LCD-Anzeige grafisch

- 7 Zeilen für Funktionen
 - 1 Zeile für Softkevs F1. ◀. ▲. ►. F2 Darstellung in Klammern: <SET>

(5) Bedientasten

- <CONFIG> Gerätekonfiguration <MENU> Hauptmenü Simulator PROG
 - Beleuchtung einschalten Programmieren
- ▲, ▼, ► F: Funktionswahl
- <SET> Funktion ändern
 - S: Stufeneinstellung

2. INHALTSVERZEICHNIS

1.	BEDIENELEMENTE	2
2.	INHALTSVERZEICHNIS	3
3		5
Ο.	3 1 Garantie	5
	3.2 Lieferumfang	5
	3.3 Entsorauna	6
4.	SICHERHEITSHINWEISE	6
	4.1 Besondere Bedienhinweise	6
	4.2 Umgang mit Batterien bzw. Akkus	6
5.	FUNKTION DES SIMULATORS	7
6.	ANSCHLUSS DES SIMULATORS	7
7	STROMVERSORGUNG	8
	7.1 Batteriebetrieb und Versorgungsspannungskontrolle	8
	7.2 Externe Stromversorgung	8
	7.3 Ein Ausschalten. Neuinitialisierung	8
8.	ANZEIGE UND BEDIENUNG	9
•.	8.1 Funktionstasten	9
	8.2 Dateneingabe	9
9.	MENÜS	.10
	9.1 Hauptmenü	10
	9.2 Untermenüs	.10
	9.2.1 Pt100-Ausgabe	10
	9.2.2 Spannungsausgabe, Thermoelemente	11
	9.2.3 Stromausgabe	11
	9.2.4 Digitalsignalausgabe	.12
	9.2.5 Durchgangsprüfer	.12
	9.3 Simulatorfunktionen	.13
	9.3.1 Stufen manuell.	.13
	9.3.2 Stuten automatisch	13
	9.3.3 Rampe automatisch	13
	0.4.1 Sprache	14
	9.4.1 Spidene	14
	9 4 3 Batteriespannung	14
	9 4 4 Baudrate, Datenformat	14
	9.4.5 Geräteadresse	.15
10) SERIELLE SCHNITTSTELLE	15
	10.1 Programmierung über die Schnittstelle	15
11	KONFORMITÄTSERKLÄRUNG	16
12	ANHANG	17
14	12 1 Technische Daten	17
	12.2 Produktübersicht	17
	12.3 Stichwortverzeichnis.	.18
13	IHRE ANSPRECHPARTNER	21
		_

3. ALLGEMEINES

Herzlichen Glückwunsch zum Kauf dieses innovativen ALMEMO[®]-Simulators. Er erlaubt die umfassende Simulation von Sensoren und Transmittern zur leichten Inbetriebnahme von Messwerterfassungssystemen und Automatisierungsanlagen. Die Signale von Pt100- und Thermoelement-Fühlern stehen ebenso zur Verfügung, wie 0-10V, 0-20mA sowie Pulse und Frequenzen von 0-100kHz. Durch die übersichtliche Grafikanzeige und die Softkeys dürfte Ihnen die Bedienung nicht schwer fallen. Um sich mit der Funktionsweise und den vielfältigen Möglichkeiten des Gerätes vertraut zu machen, sollten Sie aber unbedingt diese Bedienungsanleitung und die Grundlagen der Sensoren im AL-MEMO[®]-Handbuch lesen. Nur so können Sie Bedienfehler, sowie Schäden am Gerät vermeiden. Zur schnellen Beantwortung aller Fragen steht am Ende der Anleitung und des Handbuches ein Stichwortverzeichnis zur Verfügung.

3.1 Garantie

Jedes Gerät durchläuft vor dem Verlassen des Werkes mehrere Qualitätstests. Für die einwandfreie Funktion wird eine Garantie von 2 Jahren ab Auslieferungsdatum gewährt. Sollte tatsächlich ein Defekt vorhanden sein, verwenden Sie für den Versand möglichst das Originalverpackungsmaterial und legen Sie eine aussagekräftige Fehlerbeschreibung mit den entsprechenden Randbedingungen bei.

In folgenden Fällen ist eine Garantieleistung ausgeschlossen:

- Bei unerlaubten Eingriffen und Veränderungen im Gerät durch den Kunden
- Betrieb außerhalb der für dieses Produkt geltenden Umgebungsbedingungen
- Verwendung von ungeeigneten Stromversorgungen oder Peripheriegeräten
- Nicht bestimmungsmäßiger Gebrauch des Gerätes
- Beschädigungen durch elektrostatische Entladungen oder Blitzschlag
- Nichtbeachtung der Bedienungsanleitung

Die Änderung der Produkteigenschaften zugunsten des technischen Fortschritts oder auf Grund von neuen Bauteilen bleibt dem Hersteller vorbehalten.

3.2 Lieferumfang

Achten Sie beim Auspacken auf Beschädigungen des Gerätes und die Vollständigkeit der Lieferung:

Simulator ALMEMO® KA 7531,

ALMEMO®-Klemmstecker, Testkabel mit Prüfspitzen,

diese Bedienungsanleitung,

ALMEMO®-Handbuch,

CD mit Software AMR-Control und nützlichem Zubehör

Im Falle eines Transportschadens ist das Verpackungsmaterial aufzubewahren und der Lieferant umgehend zu informieren.

3.3 Entsorgung

Dieses Symbol bedeutet, dass das Produkt in der Europäischen Union einer getrennten Müllsammlung zugeführt werden muss. Dies gilt sowohl für das Produkt selbst, als auch für alle mit die sem Symbol gekennzeichneten Zubehörteile. Diese Produkte dürfen nicht über den unsortierten Hausmüll entsorgt werden.

Batterien sind Sondermüll und dürfen nicht im Hausmüll entsorgt werden!

Entsorgen Sie Verpackungsmaterial, Plastik und Elektronik separat und fachgerecht!

4. SICHERHEITSHINWEISE

VORSICHT! Dieses Zeichen warnt vor Situationen, die zu Schäden am Gerät führen können.

Sie sollten unbedingt die Bedienungsanleitung lesen, um Verletzungen, Schäden und Fehler zu vermeiden.

Das Gerät darf nur von qualifizierten Service-Technikern geöffnet werden.

WARNUNG! Dieses Zeichen warnt vor Lebensgefahr durch elektrische Spannung!

Achten Sie beim Anschluss der Stromversorgung auf die richtige Betriebsspannung!

Achten Sie auf Beschädigungen durch elektrostatische Entladungen oder Blitzschlag!

Verlegen Sie Anschlussleitungen nicht in der Nähe von Starkstromleitungen!

4.1 Besondere Bedienhinweise

Wenn das Gerät aus kalter Umgebung in den Betriebsraum gebracht wird, kann auf der Elektronik Betauung auftreten. Warten Sie deshalb, bis das Gerät an die Umgebungstemperatur angepasst ist, bevor Sie es in Betrieb nehmen.

4.2 Umgang mit Batterien bzw. Akkus

Beim Einlegen der Batterien/Akkus auf richtige Polung achten. Entfernen Sie die Batterien aus dem Gerät, wenn sie leer sind oder das Gerät für längere Zeit nicht benötigt wird, um Beschädigungen durch auslaufende Zellen zu verhindern. Akkus sollten dementsprechend rechtzeitig nachgeladen werden.

Batterien dürfen nicht aufgeladen werden, Explosionsgefahr! Achten Sie darauf, dass Batterien/Akkus nicht kurzgeschlossen oder ins Feuer geworfen werden.

5

5. FUNKTION DES SIMULATORS

Der Simulator ALMEMO[®] KA7531 stellt einen universellen Generator von Sensor- und Transmittergrößen dar. Für Pt100-Fühler stehen 5 Präzisionswiderstände in 4-Leiterschaltung zur Verfügung. Die Spannungssignale von 7 verschiedenen Thermoelementarten mit einstellbarer Vergleichsstellentemperatur werden berechnet und über einem 16bit-DA-Wandler ausgegeben. Genauso werden die Transmittersignale 0-10V und 0-20mA erzeugt. Pt100-, Spannungs- und Stromsignale sind voneinander galvanisch getrennt. Die Ausgabewerte können digitweise vorgegeben oder in wählbaren Stufen manuell, aber auch automatisch eingestellt werden. Sogar eine kontinuierliche Rampengenerierung mit einstellbaren Grenzwerten ist möglich. Digitale Signale von 0.01Hz bis 500kHz lassen sich als Frequenz mit wählbarer Pulsweite oder über Perioden- und Pulsdauer realisieren. Zusätzlich ist ein Durchgangsprüfer vorhanden, der den Spannungsabfall misst und ab einer einstellbaren Schwelle einen Signalton abgibt.

Optional kann der Simulator über Schnittstelle vom PC gesteuert oder in einem ALMEMO[®]-Netzwerk betrieben werden.

6. ANSCHLUSS DES SIMULATORS

Zum Anschluss der Simulatorgrößen an die entsprechenden Geräte verfügt der Simulator über 5 ALMEMO[®]-Buchsen P0 bis P4 (1). Im Zubehör befindet sich ein ALMEMO[®]-Teststecker (7) mit 6 Klemmen zum Anschluss der Pt100-Widerstände in 4-Leiter-Schaltung. Für alle anderen Signale gibt es den Stecker mit zweipoligem Kabel und Bananensteckern (8). Für den Durchgangsprüfer sind zusätzlich Prüfspitzen vorhanden.

Anschluss des Pt100-Simulators mit ALMEMO[®]-Teststecker ZA 1000-TS in 4-Leiter-Schaltung (Klemmen A, B, C, D):

Anschluss von Spannungs-, Strom- und Digitalsignalen, sowie Durchgangsprüfung über das zweipolige ALMEMO[®]-Testkabel ZA 1000-TK mit Bananensteckern (Klemmen A = +, B = -):

7. STROMVERSORGUNG

Zur Stromversorgung des Simulators haben Sie folgende Möglichkeiten:
3 Alkaline-Mignon-Zellen (Typ AA) im Gerät
Netzadapter 12V, 0.2A mit ALMEMO®-SteckerZA 1312-NA1
ZA 1312-NA1
ZA 1000-FSV
ZA 1000-FSV
Versorgung und RS422-Netzanschluss mit ALMEMO®-Stecker
Versorgung und USB-Anschluss über ALMEMO®-DatenkabelZA 1919-DKUV

7.1 Batteriebetrieb und Versorgungsspannungskontrolle

Zur Stromversorgung des Gerätes dienen 3 Alkaline-Mignon-Batterien. Der Grund-Stromverbrauch liegt bei ca. 30 mA und ermöglicht eine Betriebszeit von ca. 70 Stunden. Ist die Beleuchtung eingeschaltet, reduziert sich diese Zeit auf ca. 30 h. Bei Nutzung des Stromausganges hält die Batterie u.U. nur noch 15 h. Die aktuelle Betriebsspannung wird in der Gerätekonfiguration (s. 9.4) angezeigt, damit können Sie die restliche Betriebszeit abschätzen. Wenn eine Restkapazität der Batterien von ungefähr 10% erreicht ist, erscheint das Imp-Symbol in der Softkeyzeile des Displays blinkend und die Beleuchtung wird abgeschaltet. Wenn die Batterien ganz entladen sind, schaltet sich das Gerät ab. Zum Wechseln der Batterien muss der Batteriedeckel (6) auf der Geräter-ückseite aufgeschraubt werden.

Bei Batteriebetrieb werden die galv. getrennten Strom- und Spannungssignale P1 und P2 zur Schonung der Batterien abgeschaltet, wenn sie nicht angewählt sind !

7.2 Externe Stromversorgung

Der Simulator erlaubt eine Fremdversorgung vorzugsweise mit dem Netzadapter ZA 1312-NA1 (12V/0.2A) über die Buchse **DC** (3). Beachten Sie dabei die Netzspannung! An diese Buchse kann über einen ALMEMO[®]-Stecker (ZA 1000-FSV) auch eine Gleichspannung von 9..12V (min. 0.2A) angeschlossen werden. Interessant ist auch der kombinierte Anschluss Versorgung und Schnittstelle an das ALMEMO[®]-Netz über ALMEMO[®]-Stecker ZA 5099-FSV oder an eine USB-Schnittstelle mit dem ALMEMO[®]-Kabel ZA 1919-DKUV.

Bei externer Versorgung sind alle Ausgänge gleichzeitig nutzbar !

7.3 Ein-, Ausschalten, Neuinitialisierung

Zum **Einschalten** des Gerätes betätigen Sie die Taste **ON** (5) in der Mitte des Tastenfeldes, zum **Ausschalten** drücken Sie die Taste **ON** länger.

Zeigt das Gerät auf Grund von Störeinflüssen (z.B. Elektrostatische Aufladungen oder Batterieausfall) ein Fehlverhalten, dann kann das Gerät neu initialisiert werden, wenn beim Einschalten gleichzeitig die Taste **F2** gedrückt wird. Dabei werden alle Einstellungen in den Auslieferungszustand gebracht.

7

8. ANZEIGE UND BEDIENUNG

Der Simulator hat ein Grafikdisplay (4) und eine Tastatur (5) zur Konfiguration des Gerätes und zur Bedienung aller Signale. Im Hauptmenü sehen Sie die entsprechenden Ports P0 bis P4 und die eingestellten Größen.

8.1 Funktionstasten

U6.01

SIMULATOR KA 7531

Die Softkey-Kürzel werden in der Anleitung in

spitze Klammern gesetzt, z.B.:

Gerätekonfiguration anwählen:

Zurück zum Hauptmenü:

Beleuchtung ein-/ausschalten:

Gerät ausschalten mit Taste:

Funktionsanwahl mit den Tasten:

In der Mitte leuchtet hier das Softkeysymbol: Die Funktion erscheint invers: Aufruf des nächsten Untermenüs mit Taste: Je nach Funktion erhalten die Tasten ein Kürzel: Parameter direkt einstellen: Funktion abbrechen:

<CONFIG>

<menu>

8.2 Dateneingabe

Ist eine programmierbare Funktion angewählt (s. 8.1), dann können Sie den Wert direkt löschen oder programmieren.

 Zum Programmieren drücken Sie die Taste:
 PROG

 Jetzt befinden Sie sich im Programmiermode:
 <P> in der N

 unter der ersten Eingabestelle blinkt der Cursor
 P1: 0-10U:

Löschen der Programmierwerte mit Taste: Erhöhen der angewählten Ziffer mit: Erniedrigen der angewählten Ziffer mit: Vorzeichen wechseln mit:

*ON

Anwählen der nächsten Stelle mit: der Cursor blinkt unter der zweiten Ziffer Zurückschalten zur vorherigen Stelle mit:

Jede Stelle wird analog der ersten programmiert:

Beenden der Dateneingabe mit:

Abbrechen des Programmiervorganges mit:

Ist an der Buchse A1 oder DC ein Datenkabel oder Schnittstellenstecker angeschlossen, dann wird aus Sicherheitsgründen die Tastenbedienung des Simulators automatisch blockiert!

Zur Kontrolle erscheint in der Softkeyzeile: Remote Controi !

9. MENÜS

Die Bedienung des Simulators erfolgt über ein Hauptmenü mit dazugehörigen Untermenüs, in denen die Parameter im einzelnen einstellbar sind.

9.1 Hauptmenü

Im Hauptmenü lassen sich mit den Tasten **PROG**, \blacktriangle / \checkmark alle Parameter der Ausgabeports P0 bis P3 anwählen und direkt eingeben s. 8.2. Im Port P4 wird dabei die Schwelle des Durchgangsprüfers programmiert. Zur detaillierten Konfiguration der Ports lassen sich jeweils Untermenüs anwählen.

Anwahl der 5 Pt100-Werte auch mit Taste:

9.2 Untermenüs

Nach Anwahl im Hauptmenü lassen sich alle Ports P0 bis P4 in Untermenüs im Detail konfigurieren und Simulationsfunktionen (s. 9.3) aufrufen.

Aufruf der Untermenüs mit der Taste:

Zurück zum Hauptmenü jeweils mit Taste:

9.2.1 Pt100-Ausgabe

An der Buchse P0 stehen 5 Widerstände in 4-Leiterschaltung zur Simulation von Pt100-Fühlern zur Verfügung (Anschluss s. 6).

Im Untermenü PÖ: Pt100 können mit den Tasten ▲ / ▲ (Kürzel S für Stufen) die 5 Temperaturwerte 0°C, 50°C, 100°C, 200°C und 300°C vorwärts und rückwärts angewählt werden.

SIMULATOR KA	7531 V6.01
P0: Pt100	100.0 °C
P1: 0-10 U	5.000 V
P2: 0-20 mA	12.000 mA
P3: 0-4000Hz	1000.Hz
P4: Durch9an9	ja 36 mV
ESC F	ÞF SET
<set></set>	

9.2.2 Spannungsausgabe, Thermoelemente

Der Spannungsausgang liegt an der Buchse P1 an (Anschluss s. 6). Im entsprechenden Untermenü P1 sind zunächst folgende Spannungsbereiche anwählbar:

-3...10V,

-10...60mV

plus 7 Thermoelementbereiche:

TC NiCr	Тур К	0.1°C
TC Nisil	Typ N	0.1°C
TC FeCo	Typ J	0.1°C
TC CoCo	Тур Т	0.1°C
TC Pt10	Typ S	1 °C
TC Pt13	Typ R	1 °C
TC FI18	Tvp B	1 °C

Anwahl der Funktion 'P1: Ausgabe' mit Tasten: Wahl des Ausgabebereichs:

mit der Taste:

Wahl der Simulator-Funktionen s. 9.3:

mit der Taste:

Anzeige des Temperaturwertes in mV mit:

Zur Simulation realer Temperaturen muss die Vergleichsstellentemperatur (Buchsentemperatur des Prüflings) entweder im Prüfling ausgeschaltet oder im Simulator nachgebildet werden Anwahl der VK-Temperatur mit Taste:

Eingabe der VK-Temperatur in Funktion:

Aus-Einschalten der VK-Temperatur mit Taste: Anzeige des Temperaturwertes in mV mit:

Zurück zum Hauptmenü Simulator mit Taste:

9.2.3 Stromausgabe

Der Stromausgang liegt an Buchse P2 an (Anschluss s. 6) Im Untermenü P2 ist der Strombereich 0..20mA fest eingestellt.

Wahl der Simulator-Funktionen s. 9.3: Zurück zum Hauptmenü Simulator mit Taste:

P1: Ausgabe 0...10 V

Funktion: Stufen manuell

P1: Ausgabe <mark>-10...60mV <SET></mark> oder s. 8.2 Funktion: <mark>Stufen manueii <SET></mark> oder s. 8.2 U: 20.644mV

9.2.4 Digitalsignalausgabe

Frequenzen

Für Frequenzen und Impulse ist die Buchse P3 vorgesehen. Im Untermenü P3 sind anwählbar: 4 **Frequenzbereiche**:

- 1... 4000 Hz,
- 1... 10.00 kHz
- 1... 40.0 kHz
- 1... 100 kHz

In diesen Bereichen ist die **Pulsweite** bzw. das **Pulsweite**: **Puls-Pause-Verhältnis** in % einstellbar:

Impulse

Außerdem gibt es zwei **Pulsbereiche** mit Vorgabe der **Periodendauer** im Bereich von:

2us ... 99.999ms 2ms ... 99.999s

Hier ist zusätzlich die **Pulsdauer** einstellbar:

Übersicht Impulsgrößen

Zur übersichtlichen Darstellung der Größen Frequenz, Periodendauer, Pulsweite und Pulsdauer gibt es ein weiteres Untermenü, das nochmal mit Taste **F** aufgerufen wird.

Zurück zum 1. Untermenü mit Taste:

9.2.5 Durchgangsprüfer

Das Prüfkabel, an Buchse P4 gesteckt, stellt einen Durchgangsprüfer bereit. Die Schwelle, ab der ein Durchgang optisch und akustisch gemeldet werden soll, ist von 1 bis 1000 mV einstellbar. Der angezeigte Messwert zeigt den Spannungsabfall, z.B. die Flussspannung einer Diode.

sweite: 50.0 %

Puisdauer: 01.000 ms

9.3 Simulatorfunktionen

Zur schnellen Überprüfung einer Regelstrecke oder einer Steuerung können systematisch bestimmte Werte in Stufen oder automatisch als Rampe vorgegeben werden. Dazu müssen Sie die Zeile **Funktion** anwählen (s. 8.1).

Eine der möglichen Funktionen:

programmieren Sie gemäß 8.2 oder mit Taste:

9.3.1 Stufen manuell

In dieser Funktion ist es zunächst möglich, den Ausgabewert anzuwählen und digitweise zu verändern (s. 8.2), beenden mit Taste <PROC>.

Zur **Vorgabe einer beliebigen Stufenhöhe** Funktion '**Stufe**:' anwählen (s. 8.1) und gewünschten Wert eingeben (s. 8.2).

Änderung der Steuergröße stufenweise mit:

9.3.2 Stufen automatisch

In der Funktion 'Stufen automatisch' läßt sich die stufenweise Änderung der Steuergröße automatisieren. Hier kann in der Funktion 'Zeit' die Verweilzeit pro Stufe eingegeben werden.

Start der stufenweisen Ausgabe mit Taste: Stop der stufenweisen Ausgabe mit Taste:

9.3.3 Rampe automatisch

In dieser Funktion ist es möglich, die Steuergröße von einem Startwert bis zu einem Stopwert stetig in einer bestimmten Zeit automatisch zu durchfahren (sägezahnförmig). Dazu kann man außer dem Startwert noch den Stopwert in Funktion 'Stop' und die Gesamtzeit von Start bis Stop in Funktion 'Zeit' eingeben.

Start der stetigen Ausgabe mit Taste: Stop der stetigen Ausgabe mit Taste:

9.4 Gerätekonfiguration

Im Menü 'GERATEKONFIGURATION' lassen sich einige grundsätzliche Einstellungen des Adapters vornehmen, die Betriebsparameter 'Geräteadresse' und 'Baudrate' für die serielle Schnittstelle, die Menüsprache und den Beleuchtungsmodus.

Anwahl der Gerätekonfiguration im Hauptmenü: Zurück zum Hauptmenü mit Taste:

9.4.1 Sprache

Die Sprache der Menüs kann zwischen 'Deutsch', 'English' und 'Français' gewählt werden (andere Sprachen auf Anfrage). Die Softkeys sind international und werden nicht verändert.

Anwahl der Funktion 'Sprache' (s. 8.1): Sprache ändern mit Taste:

9.4.2 Beleuchtung und Kontrast

Das Display kann beleuchtet werden, braucht dafür aber mehr Strom. Deshalb gibt es bei Batteriebetrieb eine automatische Abschaltung nach einer einstellbaren Dauer ohne Tastenbetätigung.

Einschalten der Displaybeleuchtung mit Taste: Ausschalten der Displaybeleuchtung mit Taste: Eingabe der Beleuchtungs-Dauer in Funktion:

Beleuchtung dauerhaft einschalten mit: Wiedereinschalten ohne Funktion mit Taste: Kontrast einstellen (5..100%) in Funktion:

9.4.3 Batteriespannung

Die aktuelle Betriebsspannung sieht man bei: Unter 3.5V wird die Beleuchtung abgeschaltet: Unter 3.0V wird das Gerät abgeschaltet.

9.4.4 Baudrate, Datenformat

Die Baudrate ist bei allen Schnittstellenmodulen ab Werk auf 9600 Baud programmiert. Um bei der Vernetzung mehrerer Geräte keine unnötigen Probleme zu bekommen, sollte sie nicht geändert, sondern der Rechner entsprechend eingestellt werden. Ist dies nicht möglich, können in der Funktion Baudrate die Werte 1200, 2400, 4800, 9600 bd oder 57.6, 115.2 kbd eingegeben werden.

Baudrate einstellen (s. 8.2) in Funktion:Baudrate:9600 bdDatenformat:Unveränderbar8-Datenbits, keine Parität, 1-Stopbit

<* ON> <* OFF>	Beieuchtun9: ✓ Beieuchtun9: - Dauer: <mark>20 sec</mark>
ON oder <	Dauer: – – Kontrast: 50%
Symbol:	UBat: 4.5 V

SPrache:

<SET>

* GERATEKONFIGI Geräteadresse: O Baudrate: 9 Sprache: D Beleuchtung: v D Kontrast: 50 % U	JRATION * 0 600 Bd eutsch auer: 20sec Bat: 4.5 V
MENU	*ON
<config></config>	
<menu></menu>	

Deutsch

9.4.5 Geräteadresse

Zur Kommunikation mit vernetzten Geräten ist es unbedingt erforderlich, dass jedes Gerät die gleiche Baudrate und seine eigene Adresse hat, da auf jeden Befehl nur ein Gerät antworten darf. Vor jedem Netzwerkbetrieb müssen daher alle Messgeräte und Module auf unterschiedliche Geräteadressen eingestellt werden. Ab Werk ist dort normalerweise die Adresse 00 eingestellt.

Geräteadresse einstellen (s. 8.2) in Funktion: Geräteadresse: 00

10. SERIELLE SCHNITTSTELLE

Neben der Tastenbedienung können mit der Option I alle Ports auch über die serielle Schnittstelle gesteuert werden (s. Hb. Kap. 6). Zum Anschluss an die Buchse A1 (2) gibt es eine Reihe von Datenkabeln (s. Hb. 5.2). Der Anschluss an einen Netzverteiler erfolgt am besten 6adrig über den Stecker ZA 5099-FSV an Buchse DC zu einem freien RS422-Ausgang (s. Hb. 5.3). So wird Stromversorgung und Datenübertragung kombiniert.

Der gleiche kombinierte Anschluss ist mit dem neuen USB-Daten-Versorgungskabel ZA 1919-DKUV möglich.

Ist an der Buchse A1 oder DC ein Datenkabel oder Schnittstellenstecker angeschlossen, dann wird aus Sicherheitsgründen die Tastenbedienung des Simulators automatisch blockiert!

Zur Kontrolle erscheint in der Softkeyzeile: Remote Control ! *ON

Falls nötig, kann im Menü 'GERÄTEKONFIGURATION' die 'Geräteadresse' (s. 9.4.5) nach Bedarf geändert werden.

10.1 Programmierung über die Schnittstelle

Zur Programmierung der Bereiche und Ausgabewerte gibt es folgende Befehle (s. Hb. Kap. 6):

Funktion programmieren	Befehl	
Auf Port 01 Bereich V	i01	B11
Auf Port 01 Bereich mV	i01	B10
Auf Port 01 Bereich TC Typ K	i01	B04
Auf Port 01 Bereich TC Typ N	i01	B34
Auf Port 01 Bereich TC Typ J	i01	B35
Auf Port 01 Bereich TC Typ T	i01	B36
Auf Port 01 Bereich TC Typ S	i01	B07
Auf Port 01 Bereich TC Typ R	i01	B37
Auf Port 01 Bereich TC Typ B	i01	B08

			Prog	ram	mier	rung	über	die	Sch	nitte	stelle
Auf Auf Auf Auf Auf VK- We	Port 03 Bereich 4000Hz Port 03 Bereich 10kHz Port 03 Bereich 40kHz Port 03 Bereich 100kHz Port 03 Bereich 99ms Port 03 Bereich 99s Temperatur in Digits (z.B. rt von Simulator Port pp in	. 23.4°C): 5 Digits:	i03 i03 i03 i03 i03 i03 i03	f1 f2 f3 f1 f1 f9	B29 B29 B29 B54 B54 g002 ayyy	234 ууу	Aufl. s.	u.			
Pro	grammierung u. Zustand a	ausgeben:		f3	P19						
Ant	wort: Simulator:		D.C		- 0.1						
<u>Px</u>	Interfaceelement	Variante	PU.k	<a75< th=""><th>531</th><th></th><th>200 0</th><th>0.0</th><th></th><th></th><th></th></a75<>	531		200 0	0.0			
00	Pt100-Ausgang	gesteuert	00:1	100	COM	+0.	300.0	۲C			
01	Analogausgang 10V	gesteuert	01:[JA1	COM	+1(0.000	V			
01	Analogausgang 60mV	gesteuert	01:[JA7	COM	+61	0.0001	mV			
01	Analogausgang TC TypK	gesteuert	01:1	100	COM	+1.	3/0.0	С	VK:	+02	5.1°(
01	Analogausgang TC TypN	gesteuert	01:1	1C1	COM	+1.	300.0	°С	VK:	-	°(
01	Analogausgang TC TypJ	gesteuert	01:1	IC2	COM	+1(0.000	°C	VK:	-	°(
01	Analogausgang TC TypT	gesteuert	01:1	103	COM	+04	400.0	°C	VK:	-	°(
01	Analogausgang TC TypS	gesteuert	01:1	1C4	COM	+0	1/60.	°C	VK:	+00	25.°(
01	Analogausgang TC TypR	gesteuert	01:1	105	COM	+0	1/60.	°C	VK:	-	°(
01	Analogausgang TC TypB	gesteuert	01:1	106	COM	+0	1800.	°С	VK:	-	°(
02	Analogausgang 20mA	gesteuert	02:L)A2	СОМ	+2(0.0001	mΑ			
03	Frequenzausgang 0.4kHz	gesteuert	03:F	-00	СОМ	+04	4000.1	Ηz			
03	Frequenzausgang 10kHz	gesteuert	03:F	-01	СОМ	+0	10.00	kН			
03	Frequenzausgang 40kHz	gesteuert	03:F	-02	СОМ	+0(040.0	kН			
03	Frequenzausgang 100kHz	gesteuert	03:F	-02	СОМ	+0(0100.	kН			
03	Pulsausgang 99ms	gesteuert	03:F	00°	СОМ	+99	9.9991	ms			
03	Pulsausgang 99 s	gesteuert	03:F	٥1 ⁰	СОМ	+99	9.999	S			
04	Durchgangsspannung	-	04:1	INO		+0	1000.1	mν	DS:	+05	00.m\

11. KONFORMITÄTSERKLÄRUNG

Hiermit erklären wir, Ahlborn Mess- und Regelungstechnik GmbH, dass der Simulator KA7531 das CE-Zeichen trägt und den Bestimmungen der Niederspannungsrichtlinie und den wesentlichen Schutzanforderungen der Richtlinie über die elektromagnetische Verträglichkeit 89/336/EWG entspricht.

Zur Beurteilung des Erzeugnisses wurden folgende Normen herangezogen:

Sicherheit:	EN 61010-1:2001
EMC:	EN 61326: 2006

CE

Bei einer nicht mit uns abgestimmten Änderung des Produkts verliert diese Erklärung Ihre Gültigkeit.

12. ANHANG

12.1 Technische Daten

Pt100: 5 Widerstände in 4-Leiterschaltung, galv. getrennt 0°C, 50°C, 100°C, 200°C, 300°C Temperaturwerte: Genauiakeit: ±0.1°C. Temperaturdrift: 0.01°C / K Analogausgänge: aalv. aetrennt Auflösuna: 15bit Bürde > $100k\Omega$ -3.0 ... +10.000 V -10.0 ... +60.000mV $B\ddot{u}rde > 1MQ$ 0.0 ... +20.000 mA Bürde $< 500\Omega$ + 0.05% + 0.05% v.Fw. Genauigkeit: Temperaturdrift: 20ppm / K Zeitkonstante: 100 us Thermoelementbereiche: Typ K, N, T, J (ITS90) Auflösung: 0.1K Tvp S. R. B (ITS90) Auflösuna: 1K + 0.05% + 0.05% v.Ew. Genauigkeit: -30..100°C VK-Temperatureingabe: Frequenzbereiche: 1..4000Hz, 0.01..10.00kHz, 0.1..40.0kHz, 1..100kHz Genauigkeit: entspricht der Auflösung Pulsbereiche: Periodendauer: Pulsdauer: 2us...99.999 ms 1us...99.998 ms 2ms...99.999 s 1ms...99.998 s Genauigkeit: 0.01% Durchgangsprüfer: Schwelle: 0.,1000mV Strom: ca. 1mA Spannungsversorgung: 10..12V DC Stromverbrauch: Standard: ca. 30 mA Mit Spannungs-Stromausgang: ca. 80mA + 4 x lour, (aus Batterie 4.5V) Beleuchtung: ca. 40mA zusätzlich Ausstattung: Grafikdisplay 126x64 (55x30mm), 7 Silikontasten L127 x B83 x H42 mm, ABS, Gewicht: ca. 260g Gehäuse: Einsatzbedingungen: Arbeitstemperatur: -10 ... +50 °C (Lagertemperatur: -20 ... +60 °C) Umgebungsluftfeuchte: 10 ... 90 % rH (nicht kondensierend)

12.2 Produktübersicht

Best.-Nr.

ALMEMO[®]-Simulator Pt100. 7 Thermoelemente. -10..60mV. -3..10V. 0..20mA. 0..500kHz. Durchgangsprüfer, Grafikdisplay und Tastatur. ALMEMO[®]-Teststecker, ALMEMO[®]-Testkabel mit Prüfspitzen KA 7531 Option I: Schnittstelle zur PC-Steuerung OA 7531-I Zubehör: ALMEMO®-Testkabel mit Prüfspitzen ZA 1000-TK Netzadapter mit ALMEMO®-Stecker 12V, 0.2 A 7A 1312-NA1 ALMEMO®-Versorgungsstecker ZA 1000-FSV ALMEMO[®]-Datenkabel V24-Interface, galv. getr., max. 115.2kB ZA 1909-DK5 ALMEMO®-Daten-Versorgungskabel USB-Interface, 9V, 200mA ZA 1919-DKUV

ALMEMO[®]-Daten-Versorgungsstecker mit RS422 Interface ZA 5099-FSV

Stichwortverzeichnis

Stichwort	Kapitel	Seite
4-Leiter-Schaltung	6	6
ALMEMO [®] -Testkabel	12.2	6, 16
ALMEMO [®] -Teststecker	6	6
Analogausgänge	12.1	16
Anhang	12	16
Anschluss des Simulators	6	6
Ansprechpartner	13	20
Anzeige und Bedienung	8	8
Auflösung	12.1	16
Auslieferungszustand	7.3	7
Ausschalten	7.3	7
Ausstattung	12.1	16
Batteriebetrieb	7.1	7
Batteriefach	1	2
Batteriespannung	9.4.3	13
Baudrate	9.4.4	13
Bedienelemente	1	2
Beleuchtung	9.4.2	8, 13
Beratungsingenieure	13	20
Besondere Bedienhinweise	4.1	5
BestNr.	12.2	16
Betauung	4.1	5
Betriebszeit	7.1	7
Bürde	12.1	16
Daten-Versorgungskabel	12.2	14, 16
Dateneingabe	8.2	8
Datenformat	9.4.4	13
Dauer	9.4.2	13
Deutsch	9.4.1	13
Digitalsignalausgabe	9.2.4	11
Durchgangsprüfer	12.1	11, 16
Ein-, Ausschalten	7.3	7
Einsatzbedingungen	12.1	16
English	9.4.1	13
Entsorgung	3.3	5
Externe Stromversorgung	7.2	7
Flussspannung	9.2.5	11
Français	9.4.1	13
Fremdversorgung	7.2	7
Frequenzbereiche	12.1	11, 16
Funktion des Simulators	5	6
Funktionsanwahl	8.1	8

Stichwort	Kapitel	Seite
Funktionstasten	8.1	8
Garantie	3.1	4
Gehäuse	12.1	16
Genauigkeit	12.1	16
Geräteadresse	9.4.5	14
Gerätekonfiguration	9.4	13
Hauptmenü	9.1	9
Hotline	13	20
Impulse	9.2.4	11
Konformitätserklärung	11	15
Kontrast	9.4.2	13
Kundendienst	13	20
Lieferumfang	3.2	4
Menüs	9	9
Menüsprache	9.4	13
Netzadapter	12.2	7, 16
Netzverteiler	10	14
Netzwerkbetrieb	9.4.5	14
Neuinitialisierung	7.3	7
Option	12.2	16
Periodendauer	12.1	11, 16
Produktübersicht	12.2	16
Programmierung über die Schnittstelle	10.1	14
Pt100	12.1	16
Pt100-Ausgabe	9.2.1	9
Puls-Pause-Verhältnis	9.2.4	11
Pulsbereiche	12.1	11, 16
Pulsdauer	12.1	11, 16
Pulsweite	9.2.4	11
Rampe	9.3.3	12
Remote Control	10	14
Restkapazität	7.1	7
Schwelle	9.2.5	11
Serielle Schnittstelle	10	14
Sicherheitshinweise	4	5
Signalbuchsen	1	2
Simulatorfunktionen	9.3	12
Softkey	8.1	8
Spannungsausgabe, Thermoelemente	9.2.2	10
Spannungsversorgung	12.1	16
Sprache	9.4.1	13
Start	9.3.2	12
Startwert	9.3.3	12
Stop	9.3.2	12

	Stichwortverzeichnis	
Stichwort	Kanitel	Seite
Stopwert	9.3.3	12
Stromausgabe	9.2.3	10
Stromverbrauch	12.1	7, 16
Stromversorgung	7	7
Stufen	9.3.1	12
Stufenhöhe	9.3.1	12
Technische Daten	12.1	16
Temperaturdrift	12.1	16
Thermoelementbereiche	12.1	10, 16
Übersicht Impulsgrößen	9.2.4	11
Umgang mit Batterien	4.2	5
Untermenüs	9.2	9
Vergleichsstellentemperatur	9.2.2	10
Versorgungsspannungskontrolle	7.1	7
Verweilzeit	9.3.2	12
VK-Temperatur	9.2.2	10
VK-Temperatureingabe	12.1	16
Wechseln der Batterien	7.1	7
Zeit	9.3.2	12
Zeitkonstante	12.1	16
Zubehör	12.2	16

13. IHRE ANSPRECHPARTNER

Ahlborn Mess- und Regelungstechnik GmbH, Eichenfeldstraße 1-3, D-83607 Holzkirchen, Tel. +49(0)8024/3007-0, Fax +49(0)8024/300710 Internet: http://www.ahlborn.com, email: amr@ahlborn.com

Druckfehler und Irrtümer vorbehalten